generalizations of delta-lifting modules
نویسندگان
چکیده
in this paper we introduce the notions of g∗l-module and g∗l-module whichare two proper generalizations of δ-lifting modules. we give some characteriza tions and properties of these modules. we show that a g∗l-module decomposesinto a semisimple submodule m1 and a submodule m2 of m such that every non-zero submodule of m2 contains a non-zero δ-cosingular submodule.
منابع مشابه
GENERALIZATIONS OF delta-LIFTING MODULES
In this paper we introduce the notions of G∗L-module and G∗L-module whichare two proper generalizations of δ-lifting modules. We give some characteriza tions and properties of these modules. We show that a G∗L-module decomposesinto a semisimple submodule M1 and a submodule M2 of M such that every non-zero submodule of M2 contains a non-zero δ-cosingular submodule.
متن کاملRelatively lifting modules
We consider a generalization of lifting modules relative to a class A of modules and a proper class E of short exact sequences of modules. These modules will be called E-A-lifting. We establish characterizations of modules with the property that every direct sum of copies of them is E-A-lifting. 2000 Mathematics Subject Classification: 16S90, 16D80.
متن کاملGeneralized lifting modules
We introduce the concepts of lifting modules and (quasi-)discrete modules relative to a given left module. We also introduce the notion of SSRS-modules. It is shown that (1) if M is an amply supplementedmodule and 0→N ′ →N →N ′′ → 0 an exact sequence, then M isN-lifting if and only if it isN ′-lifting andN ′′-lifting; (2) ifM is a Noetherianmodule, then M is lifting if and only if M is R-liftin...
متن کاملLIFTING MODULES WITH RESPECT TO A PRERADICAL
Let $M$ be a right module over a ring $R$, $tau_M$ a preradical on $sigma[M]$, and$Ninsigma[M]$. In this note we show that if $N_1, N_2in sigma[M]$ are two$tau_M$-lifting modules such that $N_i$ is $N_j$-projective ($i,j=1,2$), then $N=N_1oplusN_2$ is $tau_M$-lifting. We investigate when homomorphic image of a $tau_M$-lifting moduleis $tau_M$-lifting.
متن کاملOn the decomposition of noncosingular $sum$-lifting modules
Let $R$ be a right artinian ring or a perfect commutativering. Let $M$ be a noncosingular self-generator $sum$-liftingmodule. Then $M$ has a direct decomposition $M=oplus_{iin I} M_i$,where each $M_i$ is noetherian quasi-projective and eachendomorphism ring $End(M_i)$ is local.
متن کاملGeneralizations of principally quasi-injective modules and quasiprincipally injective modules
LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of algebraic systemsناشر: shahrood university of technology
ISSN 2345-5128
دوره 1
شماره 1 2013
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023